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In this chapter the recommendations and guidelines of the World Health Organ-
ization (WHO) concerning water, sanitation and health will be evaluated in the
light of disease caused by human pathogenic viruses. The focus will be on drinking
water safety.
WHO guidelines for drinking water quality

From end product monitoring to prevention

In 1983–1984 and 1993–1997, respectively, the WHO published the first and second
editions of the Guidelines for Drinking Water Quality (GDWQ). The development
of these Guidelines in the 1980s was a significant departure from previous ‘inter-
national standards’, emphasising their advisory nature to national governments
and the importance of their adaptation to take account of national and local socio-
cultural, environmental and economic circumstances. This philosophy was main-
tained in the second edition, which provided guidance on many more individual
chemicals. In 1995, it was decided to revise the guidelines to account for advancing
scientific knowledge with respect to drinking water quality. This especially related
to microbial hazards and infectious disease risks. Since the early 1990s, a process of
‘rolling revision’ of the GDWQ has led to more frequent updating including
additional publications regarding the chemical and microbiological aspects of
drinking water quality and toxic cyanobacteria in water and addenda to the
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Guidelines themselves. All these publications and the Guidelines are freely
available on the Internet (http://www.who.int/water_sanitation_health/dwq).

The third edition of the WHO GDWQ was launched in September 2004 at the
‘World Water Congress’ in Marrakech, Morocco. According to these guidelines,
access to safe drinking water is a component of effective policy for health pro-
tection. Requirements to ensure drinking water safety include both minimum
procedures and specific guideline values as described in the WHO GDWQ, which
also describes how to use these requirements. The multiple barrier approach,
including source protection, appropriate levels of treatment and protection of water
safety during distribution, is a basic principle for the reduction of health conse-
quences by consumption of drinking water.

The guidelines outline a preventive management ‘framework for safe drinking
water’ (Fig. 1). The framework includes ‘health-based targets’ to assist national
authorities who are normally responsible to set the targets for the protection of
public health from risks by exposure to drinking water. Water suppliers are
responsible to meet these targets by the most appropriate means under local cir-
cumstances by specific control measures in the drinking water supply and also by
defining management actions in case of regular situations or incidents. Assessing
the adequacy of systems, defining and monitoring control measures and establish-
ing management plans are the three components of the so-called ‘water safety
plans’ (WSPs). Achievement of health-based targets may be verified by independent
surveillance to assess the safety of the drinking water through additional verifi-
cation or audit-based approaches. This framework for safe drinking water can be
adapted according to environmental, social, economic and cultural circumstances
of drinking water provision on the national, regional or local level.

The fourth edition of the WHO GDWQ is planned for 2009 that would
include viewpoints on topics such as safe drinking water for vulnerable groups.
Fig. 1 Framework for safe drinking water (WHO, 2004).

http://www.who.int/


Global Supply of Virus-Safe Drinking Water 129
Addenda for this edition have been published in 2006 and 2007 (http://
www.who.int/water_sanitation_health/dwq).

Water-related viruses

The WHO GDWQ concerns prevention of waterborne diseases by exposure to
microbial, chemical and radiological hazards in the drinking water. Microbial
hazards are still considered to be of major concern for providing safe drinking
water in both developed and developing countries. Infectious diseases caused by
pathogenic bacteria, viruses and parasites (e.g. protozoa and helminths) are the
most common and widespread health risk associated with drinking water.

The true waterborne diseases are part of a wider range of water-related disease.
Water-related disease may be water-based, water-washed, waterborne or be trans-
mitted by water-related insect vectors (Bradley, 1977). Insect vectors breeding in
water or insect vectors only biting near water cause water-related infectious disease.
Some viruses are water-related such as dengue virus and the flavivirus causing yellow
fever. These viruses are transmitted via the bite of specific mosquitoes. Water-based
diseases are typically caused by parasitic worms not virus infections in which wa-
terborne hosts support an essential part of the life cycle of the infecting agent.
Waterborne diseases are caused by the ingestion of water contaminated by human
and/or animal excreta and secreta containing pathogenic bacteria, viruses or par-
asites, which are passively carried in the water supplies. Most water-related viruses
are waterborne such as poliomyelitis virus, rotavirus, norovirus (NoV) and hepatitis
A and E viruses (HAV and HEV, respectively). Water-washed diseases are the result
of lack of water. This leads to poor personal hygiene and allows skin or eye infections
to develop and spread easily through personal contact or contact with contaminated
water. An example of a water-washed virus is adenovirus though some adenoviruses
are typically waterborne. Most waterborne diseases can also be water-washed be-
cause inadequate personal hygiene facilitates faecal–oral disease transmission.

Besides the well-known water-transmitted viruses (see Chapters 2–4), infection
and disease may be associated with (re-)emerging viruses such as the water-related
chikungunya virus and emerging viruses such as severe acute respiratory syndrome
(SARS) coronavirus and avian influenza virus (see Text box 1). Also, mutation
and recombination of existing virus strains may lead to (re-)emergence such
as described for vaccine-derived poliovirus (see Chapter 4). As a group, water-
transmitted viruses can cause a wide variety of infections and symptoms involving
different routes of transmission, routes and sites of infection and routes of excre-
tion. Most water-transmitted virus infections occur asymptomatically or cause
diarrhoea and self-limiting gastroenteritis in humans. Some waterborne viruses
may cause respiratory infections, conjunctivitis, hepatitis and diseases that
have high mortality rates; such as aseptic meningitis, encephalitis and paralysis.
In addition, some of these viruses such as specific human enteroviruses have
been linked to chronic diseases such as myocarditis and type 1 diabetes mellitus
(Witso et al., 2006). As yet other long-term health effects, such as cancer, are not
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Text box 1
The WHO publication Emerging Issues in Water and Infectious Dis-

ease provides knowledge and guidance to information sources on
the evolution of infectious disease, the emerging waterborne patho-
gens, new environments and technologies that may influence emer-
gence. It describes scientific advances in water microbiology and
changes in human behaviour and vulnerability to broaden awareness
and enhance preparedness about the changing world and its associ-
ated hazards (http://www.who.int/water_sanitation_health/emerging/
emerging.pdf).
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readily associated epidemiologically with water-transmitted viral disease (Ashbolt,
2004).

Faecal–oral transmission is the most well-known route of infection with wa-
terborne viruses though other excreta (e.g. urine) and secreta (e.g. sweat) may also
play a role in virus transmission via water which is less well studied. Transmission
through aerosols and droplets derived from contaminated water may also lead to
virus infection. A recent example of such environmental transmission of predom-
inantly person-to-person transmitted flu-like viruses was the spread of SARS
coronavirus in the large, private apartment complex Amoy Gardens in Hong Kong
in 2003 (McKinney et al., 2006).

Since water-transmitted viruses do not grow in water, their numbers are de-
termined by the extent of excretion/secretion into the environment followed by
subsequent disintegration (see Chapter 5). The number of water-transmitted viruses
in the water is determined by shedding of viruses by symptomatic patients as well as
asymptomatically infected humans. Moreover, initially zoonotic viruses may be
excreted by both the animal and the human host (see Text box 2).

Subsequent virus disintegration in the environment depends on the specific
sensitivity of the virus to inactivation, e.g. by radiation, temperature and its ten-
dency to attach or aggregate with particles (reviewed by John and Rose, 2005).
Viruses that are efficiently transmitted via blood or respiratory droplets generally
have a limited resistance in the water, such as human immunodeficiency virus
(HIV), whereas other, mainly faecal–oral transmission of viruses such as poliovirus,
are much more resilient (Moore, 1993). This range of viral resistance in the water is
defined by the virus properties such as size, shape, charge, etc. The possible public
health threat of (re-)emerging viruses should be assessed based on these particle
characteristics. For example, SARS lead to the investigation of previously de-
scribed respiratory agents such as Legionella. The newly identified SARS corona-
virus was initially characterised as a respiratory virus without estimating its
potential for transmission via water (Ksiazek et al., 2003). Subsequent research
showed the common high level of excretion in faeces from infected individuals
(Ding et al., 2004). Experimental studies showed stability of infectious virus for
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Text box 2
The WHO book on Waterborne Zoonoses: Identification, Causes

and Control provides a critical and balanced assessment of current
knowledge about waterborne zoonoses and identifies strategies and
research needs for anticipating and controlling future emerging
water-related diseases (http://www.who.int/water_sanitation_health/
diseases/zoonoses.pdf).
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several days in different liquid environments (Duan et al., 2003). This outlines the
need for a proper assessment of the potential role of drinking water in SARS
coronavirus transmission and in general in the transmission of emerging viruses.
Another public health concern arises from the high infectivity as determined for
most viruses emphasising the significance of the presence of each infectious virion
in water for human use. The probability of infection from exposure to one or a few
virus particles in water has been described for several waterborne viruses (Haas
et al., 1993; Lindesmith et al., 2003).
Health-based targets

Faecally derived pathogens are currently the principal concerns in setting health-
based targets for microbial safety of drinking water. Health-based targets are set by
national authorities to protect and improve drinking-water quality such as with
respect to the quantity and type of viruses present and, consequently, human health
from viral disease. Health-based targets to reduce the waterborne disease burden
may take different forms and are best derived using quantitative risk assessment,
taking into account local conditions and hazards including epidemiological evi-
dence of waterborne disease. International guidance on good practice is available
to assist this (WHO, 2004). Typically performance and health-outcome targets are
suitable as types of health-based targets for microbial hazards such as human
pathogenic viruses in drinking water (Table 1).
Health outcome target

The health outcome target is the target type for which health effects and drinking-
water management are most closely linked, but is not often applicable in practice
and other types are more frequently used. Health-outcome targets are most useful
in case of a measurable burden of water-transmitted disease, e.g. that associated
with the presence of human pathogens in small water supplies both in developing
and developed countries. It requires effortless and reliable monitoring of changes
in exposure. Several aspects may hamper establishing the attributable risk of
waterborne viral disease. First of all, it may be difficult to distinguish viral disease

http://www.who.int
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Table 1

Health-based targets as applicable for microbial, e.g. viral, hazards

Type of target Nature of target Typical applications Assessment

Health outcome
� Epidemiology

based

� Reduction in

detected disease

incidence or

prevalence

� Microbial

hazards with high

measurable

disease burden

largely water

associated

� Quantitative

microbial risk

assessment

� Risk

assessment

based

� Tolerable level of

risk from

contaminants in

drinking water,

absolute or as a

fraction of the

total burden by

all exposures

� Microbial

hazards in

situations where

disease burden is

low or cannot be

measured directly

� Public health

surveillance and

analytical

epidemiology

Performance
� Generic

performance

target for

removal of

groups of

microbes

� Microbial

contaminants

� Compliance

assessment through

system assessment

and operational

monitoring

� Customised

performance

targets for

removal of

groups of

microbes

� Microbial

contaminants

� Individually

reviewed by public

health authority;

assessment would

then proceed as

above
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from disease with similar symptoms but caused by other pathogens such as bacteria
and parasites. Gastroenteritis may manifest itself with very general complaints such
as abdominal cramps, fever, nausea, vomiting, diarrhoea, etc. On the other hand,
projectile vomiting is characteristic for specific viruses, i.e. NoV, and bloody di-
arrhoea is quite uncommon with viral gastroenteritis. The same holds true for
hepatitis that may be associated with either one of two specific waterborne viruses
(HAV and HEV) or one other virus out of five different virus families but also with
alcohol abuse or, though uncommonly, microsporidia infection. Second, it may not
be possible to discern water-transmitted disease from disease contracted via other
routes such as person to person, utensils or food. And in case of food, the trans-
mission route may involve water such as preparation of lemonade or ice cubes and



Text box 3
The WHO Guidelines for the safe use of wastewater, excreta and

grey water describe health-based targets and good management prac-
tices to safeguard the health benefits such as better nutrition and food
security for households and at the same time control the possible
negative health impacts from exposure to hazardous substances such
as viruses (WHO, 2006a; http://www.who.int/water_sanitation_health/
wastewater/gsuww/en).
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irrigation or washing of crops (see Text box 3) with virally contaminated water.
The virus infections and symptoms resulting from either described route of trans-
mission will be the same. Moreover, in the presence of other obvious high-risk
exposures the drinking water may not be considered as the source of infection and
disease, for instance in case of bottled water versus fruits or vegetables consumed
raw. Nevertheless, if locally food-borne disease encompasses a higher burden as
compared with waterborne disease, then it should be given correspondingly greater
attention taking also into account costs and impacts of available interventions.

A third aspect hindering the estimation of waterborne viral disease burden is the
incubation period; it may take several weeks for some viral diseases such as hep-
atitis to manifest themselves. The time of peak contamination in the source, failure
in treatment or contamination in the distribution may be long gone. Also the
drinking water may comply with regulations involving bacterial counts but these
may be insufficient with respect to reduction of human pathogenic viruses. And
fourth, the primary source may be drinking water but in case of high-level sec-
ondary transmission from person to person this may go unnoticed. However, in
recent years methodology and awareness have improved greatly resulting in more
and more publications on drinking-water disease outbreaks (Poullis et al., 2005).
Remarkably few outbreaks were described associated with exposure to enterovi-
ruses in drinking or recreational waters. Recently, large outbreaks with hundreds of
cases of meningitis were reported for both types of exposure (Hauri et al., 2005;
Amvrosieva et al., 2006). Also, the causative agent of the first reported waterborne
outbreak of hepatitis E in Delhi, India in 1955 and 1956 was not identified until the
1990s with the advances in molecular and immunodiagnostics (Worm et al., 2002).

Health outcome-based targets may also be based on the results of quantitative
microbial risk assessment (QMRA; see Chapter 8). In these cases, health outcomes
are estimated based on information concerning exposure and dose–response rela-
tionships. However, with regard to QMRA also there are limitations in the available
data and models (see Section Risk management). In addition, uncertainties such
as short-term fluctuations in water quality may have a major impact on overall
health risks—including those associated with background rates of disease and out-
breaks—and are a particular focus of concern in expanding application of QMRA.
Nevertheless, QMRA may be very useful in directly assessing data gaps if not in
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actual assessment of risks for consumption of drinking water. The results of a
QMRA may be employed as a basis to define water quality targets or may provide
the basis for development of performance targets (see Section Performance target).

Performance target

In contrast with health outcome targets, performance targets are frequently applied
to the control of microbial hazards in piped supplies of any size though there is less
accrued experience in their application to source protection or distribution than
there is to treatment processes and systems (http://www.who.int/water_
sanitation_health/dwq/en/safepipedwater.pdf). Performance targets are also read-
ily applied to wastewater re-use systems (WHO, 2006a). Performance targets aid
the selection and use of control measures to achieve acceptable source water quality
and treatment efficiency. These control measures must ensure the prevention of
pathogens breaching the barriers of source protection, treatment and distribution
systems or preventing growth within the distribution system.

Targets for the removal of pathogens preferably are derived from location-
specific data on source water quality. The source water may be groundwater or
surface water or a mixture of both. Groundwater may be initially free of pathogenic
viruses because of age. If water seeps through soil before reaching the groundwater,
it may be effectively purified with respect to viruses depending on soil and virus
type (Zhuang and Jin, 2003). However, shallow and/or unconfined groundwater
may be contaminated through leaking of viruses originating from host ex-/secre-
tions near the source or through flaws in the extraction process (see Text box 4).

In case of surface water, the number and type of human pathogenic viruses
depend on the proximity of the viral reservoirs and dilution and inactivation of the
viruses between point or diffuse source and the intake location for drinking (water
production). Rainwater may also be used as drinking water. This type of source
water may be more likely to be microbially contaminated by animal faeces if the
rainwater is collected on rooftops with birds and rodents in the vicinity. Hantavirus
infection is widely spread among rodents such as different types of mice and rats.
On the other hand, poor hygienic and sanitation conditions associated with the
design of the reservoir or tap may lead to viruses originating from human faeces.
To date no study has been conducted for the presence of human pathogenic viruses
in rainwater. Alternatively, seawater may be used as a source for drinking water by
Text box 4
The WHO book on Protecting Groundwater for Health: Managing

the Quality of Drinking Water Sources is a tool for intersectoral devel-
opment of strategies to protect groundwater for health providing
different points of entry (http://www.who.int/water_sanitation_health/
gdwqrevision/groundwater/en/).
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use of desalination. However, both bacteriophages and human pathogenic viruses
were found to be very prevalent in seawaters (Shuval, 2003). Viruses seem to be
readily inactivated in natural seawaters (Wetz et al., 2004). So far nothing is known
about the reduction of human pathogenic viruses by desalination but membrane
systems such as reverse osmosis and electrodialysis, which are the newest approach
to desalination, are known to be very efficient in virus removal. Though desali-
nation remains one of the most expensive ways to produce drinking water,
these new advances and the increasing water scarcity may push the use of sea-
water (Reuther, 2000; http://www.who.int/water_sanitation_health/gdwqrevision/
desalination/en/).

The quality of source water with respect to human pathogenic viruses thus
highly depends on the circulation of particular viruses in the human population and
with respect to zoonotic viruses in the animal population. Specific clinical data or
source water quality data may not be available for human pathogenic viruses or for
the location. In both developing and developed regions, viral disease is often clas-
sified as non-bacterial, probably viral, but never confirmed. In absence of specific
data, national or regional data and/or data on viruses such as bacterial viruses
(bacteriophages) may serve as input for setting performance targets. In this respect,
free data sharing among researchers and risk managers is a key to successful re-
duction of the environmental spread of pathogenic viruses and reduced burden of
water-transmitted viral disease.

Depending on the specific source water quality, the required performance target
as in reduction of viruses by treatment can be set. These requirements concern
control measures that must ensure both sufficient and robust virus reduction. The
treatment efficiency that is needed to produce drinking water of acceptable quality
with respect to viruses can be estimated by means of a system assessment (see
Section Risk management). Alternatively in case of a high disease burden the effi-
ciency of point-of-use treatment may be assessed with a surveillance programme.
A multiple barrier approach including several treatment steps will facilitate a con-
stant drinking water quality. However, besides knowledge of source water quality
this requires trained operators and straightforward risk management actions (see
Section System assessment). Moreover, the viral water quality often varies rapidly
and over a wide range (Westrell et al., 2006). Treatment processes should be eval-
uated with respect to handling of short-term fluctuations as well as their potential
to be the source of short-term fluctuations.

The role of the distribution system in the fate of human pathogenic viruses in
drinking water so far has not been the focus of many studies (Skraber et al., 2005).
The question is whether human pathogenic viruses benefit from their transport in
the distribution system, for instance by the presence of biomass or biofilms pre-
venting their inactivation. Or that growth in the distribution system may be con-
sidered as an additional treatment step aiding virus reduction in drinking water
before consumption. Performance requirements are also important in certification
of devices for drinking water treatment and for pipe installation that prevents
ingress. Leaks or human error leading to unintended incorrect connections may

http://www.who.int/
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be an important attributor to virus-associated disease outbreaks (Jardine et al.,
2003).

The choice of an index virus to be able to target the group of human pathogenic
viruses is very useful not only to indicate source water quality but also to estimate
the reduction of viruses in the treatment of the source water and virus dynamics in
the distribution system. Including different viruses reflecting the diverse character-
istics with respect to their replication rates, natural reduction and reduction by
treatment will improve the eventual drinking water quality by optimising the
drinking water supply from source to tap. For viruses transmitted by the fae-
cal–oral route, drinking water is only one vehicle of transmission. Contamination
of food, hands, utensils and clothing can also play a role, particularly when do-
mestic sanitation and hygiene are poor. Since water is the most important trans-
mission route for some viruses whereas others are mainly transmitted via food or
person to person, improvements in the quality and availability of water, in excreta
disposal and in general hygiene are all important in reducing faecal–oral trans-
mission of viruses. In combination with target microbes representing other path-
ogen groups, i.e. bacteria, parasites and helminths, performance targets can be
developed that encompass both control challenges and health significance for a
broad range of pathogens. In addition to source water quality, treatment efficiency
and distribution, disease burden and dose–response relationships for specific path-
ogens serve as the basic parameters for the derivation of performance targets.
Performance targets may be derived in relation to exposure to specific pathogens;
however, account should be taken of the impact of short-term peaks in virus con-
centration on overall exposure and therefore the risk of drinking water disease.

Reference level of risk

To be able to establish the possible public health priority of reduction of water-
transmitted viral disease as compared with other burdens of disease, a reference
level of risk for the comparison of diseases is useful. A common denominator for
disease burden enables a consistent approach for dealing with each hazard. Water-
transmitted disease may be compared with disease contracted via other pathways.
Similarly, viral diseases may be compared with disease associated with other path-
ogen groups or with each other. The hazard identification may be hampered,
though, by the equivalence of disease symptoms of viral and non-viral diseases as
explained above for gastroenteritis and hepatitis that may have alternative causes.
A common metric taking into account differing probabilities, severities and du-
ration of effects is the disability adjusted life year (DALY) widely used by WHO in
the GDWQ. The range of differing severities, including acute, delayed and chronic
effects and both morbidity and mortality associated with the specific viral pathogen
have to be known. In addition, infection with a water-transmitted virus may have
more severe disease outcome in vulnerable individuals as compared with the gen-
eral population. This, for instance, holds true for HEV infection with a relatively
high mortality rate among pregnant women (Rab et al., 1997).
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In two ways viruses transmitted via water may be specifically significant as
compared with other routes of transmission or other pathogens. One, major
changes in viruses leading to a possibly more virulent, infectious or pathogenic
virus type may result from recombination; this in contrast with other pathogens. In
particular recombination may occur if the host is exposed to multiple virus variants
from the same species. These double infections are more likely to occur as a result
of consumption of drinking water or water-contaminated foods but not of person-
to-person transmission. Two, consumption of virus-contaminated drinking water
from a reservoir or served by a piped distribution reaches a relatively large part of
the population rapidly leading to many exposures of humans and perhaps animals.
And more generally, by means of the described approach employing a reference
level of risk it may become evident that waterborne viral disease is a far more
important public health challenge than frequently appreciated.

Water safety plans

Hazard analysis and critical control point (HACCP) has been a breakthrough in
the control of food safety initially applied for the safety of foods for the manned
space programme in the 1960s. The principles of HACCP are based on developing
an understanding of the system, prioritising risks and ensuring that appropriate
control measures are in place to reduce risks to an acceptable level. These same
principles have been long applied in drinking water safety management and more
recently have been refined and tailored to the context of drinking water (Havelaar,
1994) following the application of HACCP by several water utilities in the world
(see example for Australia in http://www.who.int/wsportal/wsp/en/). Such a sys-
tematic management approach to water safety by the water suppliers was trans-
lated by WHO into a so-called WSP that incorporates system protection and
process control. The WSP objectives are to ensure safe drinking water through
good water supply practice. This involves preventing contamination of source wa-
ters, treating the water to the extent necessary to meet health-based targets and
preventing contamination during storage, distribution and handling of drinking
water. A WSP comprises system assessment and design, operational monitoring
and management plans, including documentation and communication, concerning
all aspects of the drinking water supply from catchment to consumer. The WHO
GDWQ asks for the inclusion of management plans as an integral part of the
WSPs. These plans should describe actions to be taken during normal operation or
incident conditions. The system assessment should be documented (including up-
grade and improvement). Furthermore, monitoring and communication plans and
supporting programmes should be described. In this way the management and
control of drinking water supply are safeguarded and continued through systematic
and detailed assessment and prioritisation of hazards and the operational mon-
itoring of barriers or control measures. Moreover, in case of emergencies plans of
action are in place with consent of the people involved, which can be readily
initiated, and these plans have been rehearsed in emergency drills. The control
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measures as described in the WSP will be effective to protect public health from
water-related viral disease. WSP issues, specifically with respect to human path-
ogenic viruses in drinking water, are discussed below.
System assessment

Risk assessment has been used for decades, initially for decision making in psy-
chotherapy and vaccination strategies, and today for management of pandemics
such as influenza and AIDS. In 1993, the application of this tool was first described
for exposure to pathogenic viruses in treated drinking water, since it is difficult to
estimate risks posed from exposure to low levels using epidemiology (Haas et al.,
1993). According to the US National Academy of Sciences, the successive steps of
the risk assessment include the hazard identification, exposure assessment, dose–re-
sponse modelling and risk characterisation to estimate the probability and con-
sequences of infection—here specifically for individuals consuming various levels of
viruses in the drinking water. Risk assessment should be considered as an ongoing
process to allow advances in research and technology to be fed back into the risk
characterisation. As stated in the WHO GDWQ, a system assessment establishes
the capacity of a drinking-water supply to deliver water of a quality that meets the
health-based targets. This also includes the assessment of design criteria for new
systems and upgrading of existing systems.
Hazard identification

The word virus translated from Latin means slimy liquid, slime or poison, especially
of snakes’ venom; any harsh taste or smell. Clearly, a virus as intended in this book
is unwanted in drinking water and should be considered a hazard: a biological
agent that has the potential to cause harm. A number of issues have to be taken
into account to determine those viruses that may be water-related and need to be
considered in the specific system assessment.

Human and animal sources. The viruses that may cause disease in humans may be
derived from humans or animals. More specifically, numerous human pathogenic
viruses are shed in human and animal excreta (i.e. faeces, urine, vomitus), secreta
(i.e. saliva, tears, semen, mucus, sweat) and blood of infected individuals. In ad-
dition, viruses may target specific host organs such as the liver or the heart and
therefore these organs will harbour viruses. Porcine HEVs phylogenetically related
to human HEV strains were shown to be shed in different bodily fluids and tissues
of pigs such as faeces and liver (De Deus et al., 2007), but it is yet unknown if HEV
is shed in human fluids other than serum and faeces. Viruses account for the highest
infection risks through accidental exposure of health care workers (Tarantola et al.,
2006), but often a broad investigation of viruses in bodily fluids of humans has not
been done leaving broad knowledge gaps (Table 2).



Table 2

Incomplete but informative list of virus types present in human excreta and secreta

Faeces Urine Saliva Tears Sweat Reference

Adenovirus + + + + ? Ramsay et al. (2002), Hatakeyama et al. (2006), Kaye et al. (2005)

Aichivirus + ? ? ? ? Yamashita et al. (2000)

Astrovirus + ? ? ? ? Guix et al. (2005)

Enterovirus + + + ? ? Ramsay et al. (2002), Muir et al. (1993)

Hepatitis A virus + ? + ? ? Mackiewicz et al. (2004)

Hepatitis C virus + ? + ? + Beld et al. (2000), Ortiz-Movilla et al. (2002)

Hepatitis E virus + ? ? ? ? Singh et al. (1998)

Norovirus + ? ? ? ? Herrmann et al. (1985)

Parvovirus ? ? + ? ? Ramsay et al. (2002)

Picobirnavirus + ? ? ? ? Cascio et al. 1996, Banyai et al. (2003)

Polyomavirus + + ? ? ? Hatakeyama et al. (2006), Berger et al. (2006)

Reovirus + ? ? ? ? Giordano et al. (2002)

Rotavirus + ? ? ? ? Bowdre (1983)

Sapovirus + ? ? ? ? Phan et al. (2006)

SARS coronavirus + + + ? + Wang et al. (2004), Ding et al. (2004)

TT virus + – + + – Matsubara et al. (2000)

Note: +, studied and confirmed; –, studied but not detected; ?, no studies included in publications shown by search engine NCBI PubMed.
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Typically numerous viruses are shed in human faeces (reviewed by Carter, 2005).
Most of these viruses replicate in the gastrointestinal tract and are referred to as
enteric viruses (see Chapters 2 and 3). Some viruses are renowned for their ex-
cretion in urine such as polyomavirus JC but also human papillomavirus (HPV),
cytomegalovirus, hepatitis B viruses (HBV) and more recently SARS coronavirus-
es. The most common viruses to be secreted in saliva are HBV, HPV and cytome-
galovirus, but recently HAV, a well-known food- and waterborne virus, was also
associated with human saliva (Mackiewicz et al., 2004). In addition, saliva and
throat wash of SARS patients were positive for the presence of the specific co-
ronavirus (Wang et al., 2004). Hepatitis C viruses replicate in sweat glands leading
to virus release in sweat of patients (Ortiz-Movilla et al., 2002). Torque teno virus
(TTV) DNA was detected in tears as well as in saliva, breast milk, semen, blood,
faeces and vaginal fluid whereas no evidence was found for the presence of the virus
in urine and sweat.
For viruses shed in bodily fluids and organs the probability of being transmitted

via water is largely determined by their circulation in the population, their ability to
reach water resources and their inactivation rate in water. These issues may be
unknown besides the existing knowledge gaps on virus shedding in the absence of
specific research efforts or lack of access to the results by means of international,
peer-reviewed journals or other accessible publications. Also, epidemiological
evidence for viruses to be water-related may be lacking but this may be a research
bias as explained in Section Health outcome target.

Drinking water outbreaks. If information on specific virus types causing water-
borne outbreaks exists (see Chapters 2 and 3) then outbreak data should be col-
lected including the number of patients, their exposure and the number and type of
viruses in the contaminated water to characterise the hazard and determine a
dose–response relation (the latter instead of or in addition to human volunteer or
animal studies). Numerous waterborne outbreaks of mainly NoV-associated gas-
troenteritis have been described originating from contaminated drinking water but
often the descriptions are anecdotical or at best an epidemiological association was
determined between exposure of the patients and the common water source. With
the improvement of detection methods with respect to sensitivity and specificity the
causative agent can be detected more often in the water and typed with similar
sequences in the patients and the common water source. Especially screening of
patient samples for the virus followed by specific design of the detection method for
monitoring the environment enhances the chance of success in confirming the link
(Duizer and Koopmans, 2006; Hoebe et al., 2004). In some instances, the cause of
the drinking water contamination is resolved and the drinking water was found to
be contaminated by sewage through pump failure or blockage of a sewage system.
In other cases, inadequate or failing treatment processes lead to insufficient re-
moval of viruses from source waters for drinking water production. Only recently
enteric cytopathic human orphan (ECHO) virus type 30 has been identified
as an important waterborne agent of meningitis in different parts of the world.
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The possibility for enteroviruses to be transmitted via drinking water (Amvrosieva
et al., 2006) or recreational water (Hauri et al., 2005) was not recognised previously
though numerous enterovirus-associated meningitis outbreaks have been described
for decades. These data confirm the value of outbreak investigations.
Selection and prioritisation of viral hazards. To be able to select and prioritise
human pathogenic viruses to be included in the system assessment, criteria con-
cerning the extent of the health risk, the waterborne transmission and the quan-
titative risk assessment need to be set. First of all, location-specific information on
the prevalence of the virus infection and disease in the population is essential
though it may be substituted by, for instance, knowledge on human pathogenic
viruses in sewage or surface waters. Furthermore, viral disease outcomes, ranging
from asymptomatic through severe defects to death (Table 3), largely determine the
health-based targets, since prevention of a high disease burden will be a more
effective intervention as compared with prevention of disease with an overall low
burden (see Section Health-based targets). The burden of viral disease involves the
severity of disease as well as prevalence. For instance, if overall more individuals
experience episodes of mild, limited viral gastroenteritis in a specific region then
patients with a more severe health outcome, viral hepatitis, should also be con-
sidered in setting the health-based targets. Besides being dependent on the path-
ogenicity of the virus, the severity of viral disease also depends on the susceptibility
of the host. The disease burden of rotavirus in high-income countries is much lower
than in low-income countries with a much higher susceptible fraction of the pop-
ulation and more severe outcome of the infection (Havelaar and Melse, 2003;
http://www.who.int/water_sanitation_health/bathing/en/).
Table 3

Disease outcomes of human pathogenic viruses

Disease outcome Causative viral agent Reference

Conjunctivitis Adenovirus, enterovirus Tavares et al. (2006)

Gastroenteritis Adenovirus, aichivirus,

astrovirus, enterovirus,

norovirus, picobirnavirus,

rotavirus, sapovirus

Glass et al. (2001)

Hepatitis Hepatitis A–G virus, TT

virus

Luo et al. (1999)

Leukoencephalopathy Polyomavirus Khalili et al. (2006)

Meningitis Enterovirus, reovirus Johansson et al. (1996)

Myocarditis Adenovirus, enterovirus,

parvovirus

Poliomyelitis Enterovirus

SARS SARS coronavirus

http://www.who.int/
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The extent of the health risk associated with a specific virus is also determined by
the ability to treat the virus infection and the availability of the treatment. Though
the area of antiviral treatment is rapidly advancing, there is no cure for many
viruses and in many countries there are no means to administer drugs to people in
need. Vaccination strategies to prevent viral disease have been very successful.
Smallpox was eradicated in 1978 and the eradication of poliomyelitis is in sight.
(Re-)emergence of vaccine-preventable viral diseases should be monitored such as
disease caused by vaccine-derived polioviruses, which can be efficiently transmitted
via water (see Chapter 4). The possibility of a virus to spread epidemically and/or
endemically is important in waterborne transmission because of the level of viruses
circulating in the asymptomatic and symptomatic population and the total burden
of viruses shed into the environment, and if relevant, also those viruses derived
from animals. In case of HEV it was found that the consumption of liver and blood
of domestic pigs, wild boar and/or deer leads to infections with HEV variants
causing hepatitis E in the exposed individuals (Li et al., 2005). The human HEV
strains were phylogenetically related to the animal variants (Lu et al., 2006).
Moreover, HEV transmission is primarily water- and food-borne but may also be
transmitted via blood transfusion, contact with sewage or animals or vertical
transmission (Singh et al., 2003; Vaidya et al., 2003; Li et al., 2005). These routes of
HEV transmission appear to be more efficient as compared with person-to-person
transmission (Somani et al., 2003). Other possible zoonotic viruses such as some
porcine NoV and sapoviruses (SaV) are genetically or antigenically related to hu-
man strains (Wang et al., 2006). Recombinants within NoV and SaV occur for
human and pig strains, and the high prevalence and sub-clinical infection rate of
these viruses in pigs raise questions of whether pigs may be reservoirs for human
strains or for the emergence of new human and porcine recombinants. The oc-
currence of zoonotic virus strains stresses the need to take animal reservoirs into
consideration regarding source protection and when assessing the health risk for
drinking water.

Environmental surveillance. In addition to disease surveillance in the population
to whom the (produced) drinking water is delivered, environmental surveillance can
aid the identification of the viral hazards by typing and quantification. Data re-
sulting from studies on human pathogenic viruses in sewage and surface waters are
accumulating. Raw sewage waters were shown to contain human enteric viruses
such as enteroviruses, reoviruses, rotaviruses, NoV and HEV (Clemente-Casares,
2003; Villena et al., 2003; Lodder and de Roda Husman, 2005). In most studies
presence/absence data were shown but the virus concentrations were not deter-
mined. Though some viruses such as specific entero- and adenoviruses can be
cultured, there is no susceptible cell line for many other human pathogenic viruses.
In this case, the virus concentration may be estimated from molecular data col-
lected by (semi-)quantitative and/or real-time polymerase chain reaction (PCR).
Typically 106 viral genomes can be detected in raw sewage as compared with 103

infectious viruses (Schvoerer et al., 2001; Laverick et al., 2004; Lodder and de Roda
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Husman, 2005; van den Berg et al., 2005). In these studies the applied sewage-
treatment processes approximately resulted in a limited 1–2 log10-units reduction as
assessed by culture or molecular techniques. In general, primary and secondary
sewage-treatment processes do not efficiently reduce the virus concentration in
contrast with tertiary processes (Fleischer et al., 2000; Schvoerer et al., 2001; Gehr
et al., 2003; van den Berg et al., 2005; Myrmel et al., 2006). Bacteriophages may be
useful in assessing reduction of human viruses by wastewater treatment processes
(Lucena et al., 2004). Wastewater treatment is warranted to reduce viral load in
wastewaters discharging onto receiving waters (Godfree and Farrell, 2005). How-
ever, since human viruses enter wastewater at high numbers wastewater will still
contain viruses even after treatment. Therefore, in addition to wastewater over-
flows treated effluents will have to be taken into account as a significant source of
viral pollution for wastewater used in agriculture and for surface waters used for
aquaculture and fishery, recreational purposes or as a source for drinking water
production. Moreover, both raw and treated sewage may contaminate groundwa-
ter through leakage (Abbaszadegan et al., 1999; Borchardt, 2003; Borchardt et al.,
2004).
Common sources of faecal pollution, directly or indirectly contaminating sur-

face waters with human pathogenic viruses, include raw and treated sewage,
wash-off of animal manure, faeces from wildlife such as waterfowl or deer,
grazing animals and vermin in and around reservoirs, backflow from unprotected
connections and sewer cross connections. In river water samples enteroviruses,
reoviruses, rotaviruses, HAV, astroviruses, TTV and NoV were detected in
different countries around the world but these results are biased since most re-
searches were done in Europe (Matsuura et al., 1993; Gilgen et al., 1997; Schvo-
erer et al., 2000; Hot et al., 2003; Denis-Mize et al., 2004; Hörman et al., 2004;
Haramoto et al., 2005, Villar et al., 2006). Viruses originating from discharge of
treated-sewage water onto the receiving surface waters used for drinking wa-
ter production (or recreational purposes) pose a health risk (Schernewski and
Julich, 2001). Most papers on viruses in surface waters document presence/
absence data only but to be able to estimate the infectious risk by consumption of
drinking water quantitative data are necessary. In some studies, the virus con-
centrations were determined in river water varying from 0.001 to 10 infectious
entero- and reoviruses per litre to 5 to 5000 genomes for NoV and rotaviruses per
litre of river water (Haramoto et al., 2005; Lodder and de Roda Husman, 2005).
Location-specific data on concentration and types of viruses in source waters
and inactivation rates under the specific conditions in the specified waters are
preferred for the hazard identification. In the absence of such data,
virus data from other locations that may be considered comparable may also
be employed. For instance, if treated and untreated urban sewage are discharged
then it could be assumed that virus types such as enteroviruses and rotaviruses
may be present and virus concentrations could be contracted from available
studies. If there is sewage discharge from slaughterhouses, faecal pollution from
wildlife such as wild boar or deer or wash-off of animal manure HEV and SaV
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could be present and may be carried to receiving waters. In case of rodent vermin
hantaviruses could be expected.
Exposure assessment

In some regions in the world source waters that are used directly as drinking water
receive human and animal excreta and secreta originating from bathers, animals,
boats or indirectly from, for instance, wastewater discharges. In this case no re-
duction of viruses will take place before consumption. In other regions, the source
waters are treated before use as drinking water. To be able to assess the ability of
the system of concern to provide safe drinking water the viral hazards in the
drinking water should be studied quantitatively.
Pathogenic viruses in drinking water. A few studies have shown the presence of
human pathogenic viruses in untreated or treated drinking water used in different
regions around the world (Leclerc et al., 2000). As described surface waters may be
contaminated with viruses originating from a diversity of sources. Similar human
and animal sources may contaminate groundwater that is insufficiently protected
from external influences. This may be the case with semi- or unconfined ground-
water from sandy saturated zones or from limestone or marl or with pre-treated,
artificially infiltrated surface water or with bank filtered water. Groundwater was
shown to be positive for viruses in 8 or 16% of the samples analysed (Borchardt,
2003; Fout et al., 2003). Reovirus, rotavirus, enterovirus, HAV and NoV were
detected by molecular methods (Fout et al., 2003). None of the samples was pos-
itive in case cell culture was applied to detect infectious enterovirus (Fout et al.,
2003). Another study revealed virus positivity in well waters by molecular (50%)
and cell culture methods (5%; Borchardt et al., 2004). The presence of NoV gen-
omes could not be confirmed in mineral waters whether spring water or finished
product (Lamothe et al., 2003). Other studies confirmed virus-contaminated
groundwater to be the source of outbreaks of acute gastroenteritis among hundreds
of people (Parshionikar, 2003; Kim et al., 2005). Interestingly in one of the studies
the contamination appeared to be transient since none of the sequential well water
samples were virus positive (Borchardt, 2003). This may be due to short-term
fluctuations in pathogen load caused by epidemics in the human or animal pop-
ulation, seasonal variations and/or incidents. The latter may encompass upstream
(raw or treated) wastewater discharges, building of upstream sewage treatment
plant or discharge, digging, drilling or maintenance near production site, injecting
manure near unconfined source or discharge of polder waters near intake. Also
heavy rainfall events, high river-/stream discharge and flow, high groundwater
level, flooding of catchment/production site, thawing of (faecally contaminated) ice
on reservoirs, frost leading to high numbers of birds on reservoirs and high num-
bers of birds (or other game) may be associated with peaks in faecal contamination
of groundwater and also surface water.
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Evidence has been published on the presence of human pathogenic viruses in
treated water since drinking water treatment processes may have a limited capacity
for virus reduction. Infectious rotavirus and enterovirus were detected in 83% of
treated drinking water samples associated with rainfall but not with the presence of
bacterial indicators (Keswick et al., 1984). In the African region, using cell culture,
Ali et al. (2004) reported the presence of cultivable enteroviruses in 7 out of 30
finished drinking water samples at concentrations ranging from 5 to 33 plaque-
forming units per litre. In Asian and African countries, integrated cell culture PCR
enabled the detection of enteroviruses (Vivier et al., 2004), adenoviruses (Van
Heerden et al., 2003) or both (Lee and Kim, 2002; Lee and Jeong, 2004) in drinking
water. With the use of only molecular methods the presence of several pathogenic
viruses such as rotavirus (Divizia et al., 2004; van Zyl et al., 2004), astrovirus
(Gofti-Laroche et al., 2003) and NoV (Kukkula et al., 1999; Haramoto et al., 2004)
were detected in drinking water in European, African and Asian countries. In
another study in Thailand, no HAV was detected in tap waters, but in Brazil, 20%
of river and tap waters were HAV positive (Kittigul, 2006; Villar et al., 2006).
In Canada, outbreaks were identified associated with the presence of HAV and
NoV in drinking water (Schuster et al., 2005). In case of direct evidence for the
presence of pathogenic viruses in treated or untreated drinking water by either
molecular or cell culture or other techniques, the quantity and host specificity
should really be determined to be able to perform QMRA.

Pathogenic viruses in source water and virus reduction by treatment. The absence of
pathogenic viruses in finished drinking waters does not exclude their presence but
may merely indicate a lack of sensitivity of the detection techniques and/or the
representativeness of the sampling. As shown with the recent advances in virus
concentration and detection techniques more and more often human viruses are
detected in tap water. However, at low dose viruses are still significant with respect
to infectious and disease risk by exposure to drinking water because of their in-
fectivity and pathogenicity and because of the large exposed population. An
alternative approach in case of low virus concentrations in the finished waters is
their detection in source waters combined with the assessment of the efficiency of
drinking water treatment processes with respect to virus reduction. This approach
ideally involves location-specific, quantitative information on the virus concentra-
tion in the source waters and virus reduction by treatment to estimate the virus
concentration in the drinking water. In addition, information on the virus analysis,
such as virus recovery rate of the method, infectivity and host specificity of the
virus, are needed. Moreover, the local habits of drinking water consumption of the
consumers should be known.
The recovery of the applied concentration–detection procedure should be deter-

mined to be able to accurately estimate the actual virus concentration. Loss of virus
particles during the analysis will lead to underestimation of the infectious risk.
Virus recovery rates depend on the employed concentration and detection methods,
the volume of water to be concentrated, the turbidity of the water and the
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characteristics of the target virus (Senouci et al., 1996; Hill et al., 2005; Olszewski et
al., 2005; Polaczyk et al., 2006). In order to determine the recovery rate of the
sample analysis the procedure that is followed includes analysis of the viruses in the
natural water sample and analysis of the same sample seeded with a specific dose
of a known virus. This virus commonly involves the use of cultivable viruses such as
specific enterovirus types or bacteriophages. These viruses are assumed to behave
similarly to each other but differences in recovery between human and bacterial
viruses have been reported (Hill et al., 2005). Moreover, these model viruses often
have undergone several passages through the susceptible cell line and are therefore
considered cell line adapted strains, which will behave differently as compared with
naturally occurring human pathogenic viruses in the environment. However, in the
absence of alternative approaches experiments with model viruses need to be done
preferably coinciding with each sample analysis since virus recovery rates have been
found to be highly variable even when the virus and water type are kept constant
(Denis-Mize et al., 2004). In addition, in seed experiments often high virus levels are
used to easily recover the model virus. But studies have shown that at the natural
low dose virus recovery is lower and more variable (Fuhrman et al., 2005). Though
many studies were undertaken in the past years, further optimisation of methods
with respect to virus recovery is still warranted.
Since virus genomes may be present in the source water long after the virus

particle has lost its ability to infect a host cell knowledge on the infectivity of the
target virus is necessary to limit overestimation of the virus concentration and
therefore the infectious risk. On the one hand, it may be argued that the detection
of genomes of human pathogenic viruses in the drinking water is a necessary
condition for the presence of infectious viruses. The employment of culture and
molecular techniques in the detection of human pathogenic viruses in drinking
water both encompass advantages and disadvantages. Susceptible cell lines are
known for only some waterborne viruses and not for NoV (Duizer et al., 2004) and
such cell lines may not be suitable for implementation as routine and robust di-
agnostic tools. Also, cell culture assays are laborious and expensive. On the other
hand, plaque assays give quantitative results assuming that one plaque originates
from one initial infectious virus particle. The latter may be another point of
discussion (Teunis et al., 2005).
Often virus strains and types belonging to one virus family have a long history of

developing their own host specificity (Fields et al., 2002). These genetically related
viruses may be detected by the use of the same molecular or culture technique but
not each virus strain will be capable to infect the human host. In case of the
detection of human and animal, but non-zoonotic virus strains the infectious risk
would be overestimated. Examples of such virus families are enteroviruses and
adenoviruses (Fong and Lipp, 2005).
A few studies have been done on human pathogenic viruses at the intake point of

drinking water suppliers. During an extensive study period of 9 years, 9% of source
waters for drinking water production were positive for the presence of reovirus at
relatively low titres but enterovirus or adenovirus were not detected (Sedmak et al.,
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2005). Rotaviruses were detected in source waters by use of molecular techniques
(Van Zyl et al., 2004). The use of indicators for the presence of human pathogenic
viruses in source waters has been reported with highly variable success with respect
to correlation between index and indicator organisms (Bosch, 1998). The QMRA
ideally involves location-specific, quantitative information on the virus concentra-
tion in the source waters that is representative for the time period including
potentially wide quality fluctuations within it. Alternatively, literature data may be
used but as shown such data are scarce.
Also location-specific, quantitative information is needed on virus reduction by

treatment. Treatment may include a multiple barrier approach and/or point-of-use
treatment in the home. Indicators such as somatic phages or F-specific phages with
similar characteristics (size, surface charge, shape etc.) may be used in experiments
to determine the efficiency of virus reduction (Table 4). These viruses that prey on
specific bacterial hosts occur at higher numbers, which facilitates their detection
after treatment (Payment, 1991). The ease and relative cost of phage detection is
another advantage over human pathogenic viruses. Comparative analyses of the
index and indicator virus reduction by the specific treatment step should show first
that these viruses behave similarly as was performed by Payment and Franco
(1993).
Field data on pathogen removal or inactivation derived from the applied treat-

ment plant is the most significant input for the QMRA but may be difficult because
of low-level contamination or lack of methodology. Some field studies have been
described. Analysis of viruses in drinking water produced by coagulation, sedi-
mentation, sand filtration and chlorination showed 83% of the samples positive for
infectious rotavirus and/or enterovirus (Keswick et al., 1984). The overall reduction
Table 4

Characteristics of human pathogenic viruses and their possible indicators (Ferguson et al., 2003)

Virus type Size (nm) pI Phage type Size (nm) pI

Poliovirus 1 29 7.2 PM2 60 7.3

Poliovirus 2 29 4.5–6.5 PM2 60 7.3

Coxsackie virus A/B 29 6.6-8.2 FX174, PM2 26–32, 60 6.6, 7.3

ECHO virus 29 5.3–6.4 FX174, Qb 26–32, 24 6.6, 5.3

Hepatitis A virus 27 2.8 MS2 26 3.9

Hepatitis E virus 30 – – – –

Norovirus 25 4.9] Qb, PRD1 24, 63 5.3, 4.2

Sapovirus 34 – – – –

Reovirus 75 3.9 MS2 26 3.9

Rotavirus 70 – – – –

Astrovirus 29 – – – –

Adenovirus 60–80 – – – –

Note: ECHO, enteric cytopathogenic human orphan; Reo, respiratory enteric orphan; –, unknown; nm

nanometer; pI, isoelectric point; ], determined for Norwalk-like virus particles.
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of enteroviruses for similar processes in a 1-year study at 7 treatment plants was
99.97% with different coxsackie virus types B, polioviruses and echovirus identified
in the finished drinking waters at an average concentration of 0.0006 infectious
viruses per litre (Payment et al., 1985). Though in another study including 6 wa-
terworks 11 out of 55 samples of partially treated waters were positive for different
types of enteroviruses, no viruses were detected in 100 samples of finished drinking
water (van Olphen et al., 1984). The evaluation of enteric virus and bacteriophages
removal at three treatment plants did not show any positive results for viral pres-
ence in finished waters (Payment and Franco, 1993). Conventional treatment was
insufficient for the reduction of enteroviruses in case of highly polluted intake water
(Ali et al., 2004). Pilot plants on site are usually very similar to the operational
plant and less troublesome for the retrieval of data because of the smaller scale. The
removal of feline calicivirus and different phages was evaluated during conven-
tional drinking water treatment ranging from 1.85 to 3.21 log10 units (Gerba et al.,
2003). Laboratory experiments, for instance, with the specific source water and
sand from an applied rapid sand filter will also generate useful data. Comparison
of the removal of viruses and phages for a point-of-use treatment unit showed
(more than) 5 log10-units reduction for somatic phages and MS2 coliphages and
poliovirus, HAV, adenoviruses, rotaviruses and astrovirus (Grabow et al., 1999).
If facilities for collection of field, pilot plant or laboratory data are missing, lit-
erature data on similar systems as determined by specific control parameters may
be employed but though not complete, the overview above shows again that limited
data are available on human pathogenic viruses.

Fate and behaviour of viruses during transport and storage. Human pathogenic
viruses may be present in tap water depending on the concentration in the source
water and in case of treatment on the efficiency of the treatment processes with
respect to virus reduction. The concentration of pathogenic viruses in the drinking
water can be used to assess the health risk associated with the consumption of tap
water, as has been done for different viruses (see Section Risk characterisation).
However, the previous studies have not taken into account the dynamics of human
pathogenic viruses meaning the variations in the prevalence and infectivity of vi-
ruses during transport and storage. First of all, though human and animal viruses
do not grow during transport and storage, sanitation and hygiene problems may
cause (re-)introduction of pathogens in the drinking water that may survive for the
duration of storage as was shown for bacteriophages. In case of a piped distri-
bution system, the virus concentration in tap water is determined by the viral
burden of the source water on one hand and reduction by applied treatment proc-
esses (if this is the case) and during transport on the other hand. Reduction of
viruses in drinking water may be caused if temperatures are high, i.e., most viruses
are readily inactivated at over 201C (John and Rose, 2005). Exposure of the viruses
to, for instance, sunlight as well as other environmental factors will decrease the
numbers of viruses rapidly (Lytle and Sagrapanti, 2005). Again (re-)introduction of
human pathogenic viruses may occur during maintenance and repair practices



Fig. 2 Parameters that control virus behaviour in drinking water distribution systems. Viral inactivation

was considered as follows. ‘Inactivation W’ corresponds to the inactivation of virus in the water phase;

‘Inactivation B’ corresponds to the inactivation of virus in biofilm; ‘Inactivation BW’ corresponds to the

inactivation of virus entrapped or attached to biofilm and released into the water phase by sloughing or

erosion. Solid hexagon, free or particle-associated virus that is able to infect target cells; open hexagon,

free or particle-associated virus that is not able to multiply anymore. From Skraber et al. (2005).
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(Havelaar, 1994). Second, biofilms may play an important role with respect to virus
concentrations in the finished waters (Fig. 2; Skraber et al., 2005). Since it has been
shown that viruses can attach to biofilms, there is a possibility that drinking water
biofilms accumulate pathogenic viruses present in the water entering the distribu-
tion system acting as an additional removal process. On exposure to single viruses
or sloughs containing viruses released from biofilms the consumer could be in-
fected. Data on fate and behaviour of human pathogenic viruses during transport
and storage are extremely limited but this information is of importance with respect
to intervention measures.

Consumption of drinking water. Here consumption of drinking water is discussed
as route of transmission for human viruses disregarding exposure of the skin, eyes,
ears and other body parts. Besides estimation of the concentration of virus in
drinking water the assessment of the health risk posed by consumption of drinking
water requires estimation of the volume of drinking water ingested and the
response of the host to the ingested dose of viruses. Since waterborne viruses are
readily inactivated at high temperatures the risk relates to the use of unboiled
drinking water, e.g. excluding the consumption of tea but including the water used
for washing salad and for making ice cubes.
Global data on the consumption of drinking water are limited especially for the

developing regions. In studies carried out in Canada, The Netherlands, the United
Kingdom and the USA, the average daily per capita consumption was usually
found to be less than 2 l, but there was considerable variation between individuals
in different countries and within the same country. The daily median intake of cold
tap water in The Netherlands was 0.052 l, in Germany 0.15 l, in the United
Kingdom 0.475 l, in Sweden 0.8 l and in Australia 0.5–1 l (Mons et al., 2005;
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Westrell et al., 2006). Another study in The Netherlands showed a daily median
intake of cold tap water of 0.153 l, threefold higher than the study mentioned above
(Teunis et al., 1996). As water intake will vary with climate, physical activity and
culture, the above studies, which were conducted in temperate zones, can give only a
limited view of consumption patterns throughout the world. At temperatures above
251C, e.g. there is a sharp rise in fluid intake, largely to meet the demands of an
increased sweat rate (Howard and Bartram, 2005). Other factors such as changes in
cultural behaviour because of public awareness through information to the public
or changes in the drinking-water demand or supply may also play a role in the
habits of drinking water consumption. In the WHO GDWQ with respect to mi-
crobial hazards, per capita daily consumption of 1 l of unboiled water was assumed.

Dose– response modelling

The number of virus particles necessary to initiate an infection or even disease in
the susceptible host after ingestion may be as low as a few particles or even a single
particle (Ward et al., 1986; Lindesmith et al., 2003). The host may not experience
symptoms though often acute symptoms will occur. These symptoms may be mild,
severe and/or life-threatening (see Chapters 2, 3 and 4). A virus infection may
become chronic and/or health effects may be delayed, so-called sequelae. Each of
these health outcomes may result from infection with one and the same virus
variant. For instance, infection with coxsackie virus variant B4 may pass unno-
ticed, cause gastroenteritis, cause myocarditis or diabetes or lead to infant death.
The dose–response relation describes the quantitative relation between the intensity
of exposure, i.e. the dose (here pathogenic viruses in drinking water), and the
frequency of the occurrence of the adverse health effect within the exposed pop-
ulation of hosts, i.e. the response (here number of cases with specific symptoms in
the human population). Available dose–response data have been obtained mainly
from clinical studies including healthy adult volunteers but (premature) infants
were included in some other studies (Teunis et al., 1996). The dose–response re-
lations have been determined for oral ingestion of some specific variants of wa-
terborne rotavirus and enteroviruses during volunteer studies (Table 5).

As shown in Table 5 the probability of infection after consumption of one
infectious virus may range from 0.000714 for poliovirus type 1 LSc2ab to 0.388 for
poliovirus type 1 sm. The number of viruses that cause infection in 50% of the
human volunteers may vary from 1.411 poliovirus type 1 sm to 69,300 poliovirus
type 1 LSc2ab. These findings demonstrate the variability in infectivity not just
between virus families but also between virus types and even between virus variants
affecting the QMRA. On the other hand, it may reflect differences in exposed
populations (from neonates to adults) and ways of exposure (ingestion to bathing).
In case of a specific human pathogenic virus variant detected in a known fraction of
the drinking water than specific dose–response relation should be used. However,
often exposure is determined for a broad class of pathogens, like enterovirus con-
centrations as determined by use of a specific susceptible cell line (most commonly



Table 5

Infectivity of specific waterborne virus variants

Organisms Symptom scored P�
inf ð1:0Þ ID50

Rotavirusa Excretion 2.65� 10�1 6.11

Echovirus 12b Excretion 1.76� 10�3 1.05� 103

Poliovirus

1 sm Excretion 3.88� 10�1 1.411

1 LSc2ab Excretion 7.14� 10�4 6.93� 104

1 Excretion 9.10� 10�3 76.2

3 Fox (infants) Excretion 1.90� 10�1 5.513

3 Fox (premature) Excretion 2.66� 10�1 5.05

Source: From Teunis et al. (1996).

Note: P�
inf , conditional probability of infection; ID50, number of microorganisms required to cause

infection in 50% of experimentally infected animals, a measure of infectivity.
aAdministered in pH-buffered solution.
bRejected at the 95% level, within 99% confidence range for the deviance from maximum possible

likelihood.
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Buffalo green monkey, BGM). For such a large family of viruses a dose–response
relation can be defined, but this should include an additional level of variation:
differences in infectivity (and/or pathogenicity) between related virus strains.
A hierarchic dose–response model could be applied, accounting for variability both
within and between pathogenic virus strains (Teunis, personal communication).

Besides viral characteristics, such as high infectivity and recombination, the
host characteristics largely determine the adverse health effects. Genetic predispo-
sition may render an individual susceptible or insusceptible to a specific virus in-
fection as described for HIV (Paxton et al., 1996) and NoV (Lindesmith et al.,
2003). Other host susceptibility factors include nutrition, age, pregnancy and
mmune status. Some of these factors are preventable such as nutrition whereas
genetic background cannot be altered.
Risk characterisation

The concentration of pathogenic viruses in the drinking water (either directly de-
termined or derived from location-specific data on human pathogenic viruses in
source water and virus reduction by treatment) in combination with the dose–re-
sponse relation can be used to assess the health risk associated with the consump-
tion of drinking water. Several QMRA studies were performed to estimate the risk
for exposure to drinking water contaminated with adenovirus, rotavirus and cox-
sackie virus (Regli et al., 1991; Haas et al., 1993; Gerba et al., 1996; Crabtree et al.,
1997; Mena et al., 2003; Van Heerden et al., 2005). These studies involve static
QMRA models ignoring the dynamics of a viral disease process in the exposed
population with respect to the different transmission routes for the same pathogen,
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immunity, secondary transmission and genetic predisposition. These factors are
included in a dynamic QMRA model (Eisenberg et al., 1998) but these have not
been applied to date for estimation of the health risk associated with the con-
sumption of virally contaminated drinking water. Anyway, the degree of confi-
dence in the final risk estimate will largely depend on the assumptions, the
uncertainties and variability of the data on which the QMRA is built and these
need to be determined. Moreover, a level of tolerable risk needs to be set by the risk
managers. For human pathogenic viruses to date the most common tolerable risk
level was established at less than one infection in a population of 10,000 persons per
year but this is to be discussed and decided by all parties involved in drinking water
safety. More recently the WHO GDWQ use a reference level of risk of 10�6 DALY
per person per year.
Risk management

Given the assessment of the risk of viral disease from consumption of drinking
water, the risk managers have to select and implement appropriate control meas-
ures. These may involve cost-effectiveness reasoning. After implementation of a
selected intervention, the effectiveness needs to be evaluated by surveillance of viral
disease. In addition, environmental surveillance analysing the numbers of viral
pathogens in the drinking water or alternatively in the source waters may be helpful
in evaluating source protection interventions. Interventions may vary from addi-
tional research in case the risk estimate is unacceptably uncertain. In case of an
unacceptable health risk the intervention may concern an additional treatment step
in the process specifically designed to reduce human pathogenic viruses from the
source water. Alternatively, the intervention may involve enhanced source water
protection by barring virus-positive animal hosts or reducing contamination in
distribution.

Besides a system assessment, the WSPs of each drinking water supply should
include operational monitoring. Control measures need to be identified that control
identified risks and ensure health-based targets are met. For each control measure
identified, an appropriate means of operational monitoring should be defined that
will ensure that any deviation from required performance is detected in time. Op-
erational monitoring normally focuses on simple, cheap and rapid tests and as such
microbial testing is rarely applicable.

For purposes of verification as opposed to operational monitoring, E. coli

bacteria are measured. In case of the presence of this faecal indicator, the drinking
water could be contaminated with human pathogenic viruses. The appropriate
management action could, for instance, be a boiling water advisory. It would be
inappropriate to perform retesting of the same sample or resampling because the
basis for E. coli testing as a verification measure is the good performance of the test
as laid down in standard operating procedures and its use as indicator. Retesting
and resampling would take even more time and this should be spent on finding the
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fault or source of contamination to be able to protect public health. Again end
product monitoring is useful in this way but system assessment and operational
monitoring can elucidate the actual ability of the drinking water system to provide
safe drinking water also with respect to human pathogenic viruses.
Risk communication

Communication of the viral risk estimate and the proposed risk management
measures contributes to the improvement of the drinking water safety with respect
to human pathogenic viruses. Dissemination involves not only risk managers (pol-
icy makers and inspectors) and risk assessors but consumers and suppliers of
drinking water alike. For this purpose tools such as brochures and websites should
be attuned and transparent. In The Netherlands, a webtool for the assessment of
risk by non-experts was launched simultaneously with the Inspectorate guideline
for analysis of microbial safety of drinking water (De Roda Husman and Medema,
2006) to be used by Dutch policy makers and inspectors and will be released for use
by other interested parties.
Concluding remarks and recommendations

The global supply of safe drinking water should be considered with an open mind
to the possible viral threats. The potential transmission of (re-)emerging human
pathogenic viruses should be assessed based on research. For instance, foot-and-
mouth disease viruses were considered to be solely respiratory pathogens and
therefore their potential as possible waterborne pathogens was disregarded. Not
that these viruses display a major threat to the drinking water supply or human
health (Schijven et al., 2005) but animal health is endangered and at least the risk
should be assessed instead of hypothesised. Recently this has received a great deal
of attention for the emerging disease SARS: the associated coronavirus was eval-
uated with respect to possible shedding and transmission routes including water.
The same is true for avian influenza viruses which occasionally infect humans from
their animal reservoirs mostly by close contact; the potential risk of waterborne
transmission was estimated (WHO, 2006b). Theoretically, viruses could be con-
sidered as biocolloids with specific properties such as size, shape, structure, charge,
composition, genome, etc. These viral characteristics determine their behaviour in
the environment, resistance to natural inactivation and treatment and disinfection
processes. For each (re-)emerging virus these properties may be known or could be
assessed predicting the effectiveness of possible intervention measures for preven-
tion of waterborne disease. In this respect, free data sharing among researchers and
risk managers in times of emergencies and disasters as encouraged by WHO is one
of the keys to successful reduction of the environmental spread of pathogenic
viruses and reduced burden of water-transmitted viral disease.
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